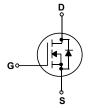


SLP14N65S / SLF14N65S 650V N-channel MOSFET

General Description

This Power MOSFET is produced using Msemitek's advanced planar stripe DMOS technology.


This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- 14A, 650V, $R_{DS(on)typ}$ = 0.510Q@V $_{GS}$ = 10 V Low gate charge (typical 30nC)
- Low Crss (typica8.0pF)
- High ruggedness
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings

T_C = 25°C unless otherwise noted

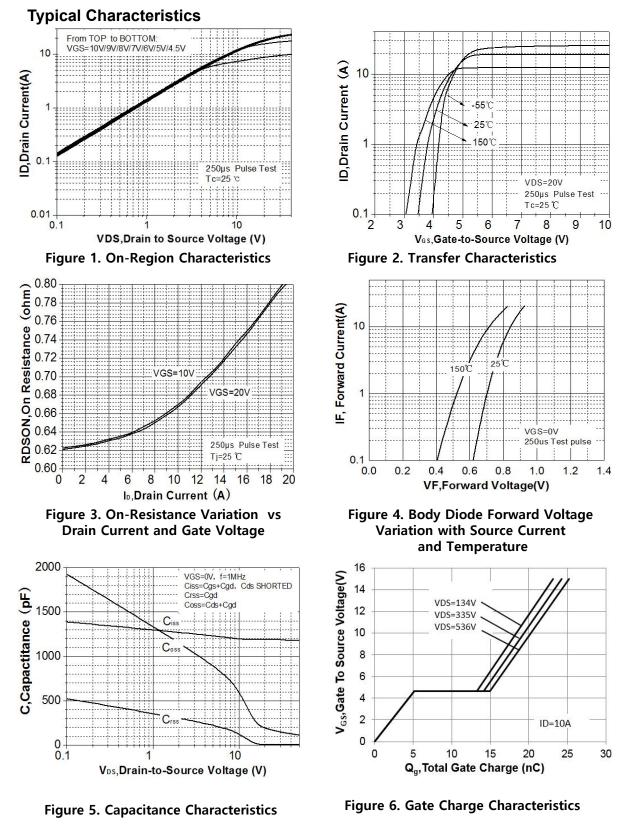
Symbol	Parameter	SLP14N65S / SLF14N65S	Units			
V_{DSS}	Drain-Source Voltage	650	V			
I _D	Drain Current - Continuous (T _C = 25°C)	14	Α			
	- Continuous (T _C = 100°C)	8.3	Α			
I _{DM}	Drain Current - Pulsed (I	lote 1)	56			
V _{GSS}	Gate-Source Voltage	±30	V			
EAS	Single Pulsed Avalanche Energy	Note 2)	428	mJ		
I _{AR}	Avalanche Current (1	lote 1)	14	Α		
E _{AR}	Repetitive Avalanche Energy	42	mJ			
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5	V/ns		
P _D	Power Dissipation (T _C = 25°C)	50	W			
	- Derate above 25°C	0.4	W/°C			
T_J , T_{STG}	Operating and Storage Temperature Range	-55 to +150	°C			
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C			

^{*} Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	SLP14N65S / SLF14N65S	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	2.5	°C/W
$R_{\theta JS}$	Thermal Resistance, Case-to-Sink Typ.		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	43.2	°C/W

۱ م	-4-			CL		1		sti	
œ	:Tr	102	11	Сr	ıar	acı	eri	STI	CS.


T = 25°C unloss othorwise noted

Electr	rical Characteristics T	_C = 25°C unless otherwise noted				
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Ch	aracteristics					
BV_DSS	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 uA	650			V
△BV _{DSS} / △T _J	Breakdown Voltage Temperature Coefficient	I _D = 250 uA, Referenced to 25°C	-	0.62		V/°C
	Zana Oata Valtana Busin Ourset	V _{DS} = 650 V, V _{GS} = 0 V			1	uA
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 520 V, T _C = 125°C	-		10	uA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V	-		100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V	-		-100	nA
On Cha	aracteristics			•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 7A		0.51	0.66	Ω
g _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 7A		12		S
Dynam	ic Characteristics					
C _{iss}	Input Capacitance			1556		pF
Coss	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		184		pF
Crss	Reverse Transfer Capacitance	1 - 1.0 WII 12		8.0		pF
Switch	ing Characteristics			•		
t _{d(on)}	Turn-On Delay Time			21		ns
t _r	Turn-On Rise Time	$V_{DD} = 325 \text{ V}, I_D = 14 \text{ A},$		36		ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 25 \Omega$ (Note 4, 5)	-	70		ns
t _f	Turn-Off Fall Time	(Note 4, 3)	-	38		ns
Qg	Total Gate Charge	V _{DS} = 520 V, I _D =14A,	-	30		nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V	-	7.7		nC
Q_{gd}	Gate-Drain Charge	(Note 4, 5)	-	10.8		nC
Drain-S	Source Diode Characteristics a	nd Maximum Ratings				
Is	Maximum Continuous Drain-Source Dio			14	Α	
I _{SM}	Maximum Pulsed Drain-Source Diode F	Pulsed Drain-Source Diode Forward Current			56	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 14A			1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} =0 V, I _S = 14 A,	-	416		ns
Qrr	Reverse Recovery Charge	dl _F / dt = 100 A/us (Note 4)		4.2		uC
	• •	ı				

Notes:

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. L =9.6 mH, I_{AS} =14A, V_{DD} =50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} =44A, di/dt \leq 200A/us, V_{DD} \leq BV $_{DSS}$, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300us, Duty cycle \leq 2%

- 5. Essentially independent of operating temperature

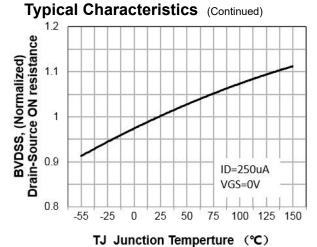


Figure 7. Breakdown Voltage Variation vs Temperature

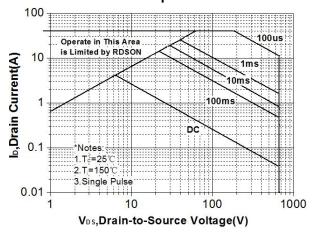


Figure 9. Maximum Safe Operating Area

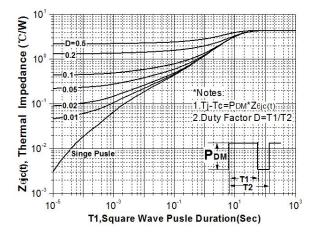


Figure 11. Transient Thermal Response Curve

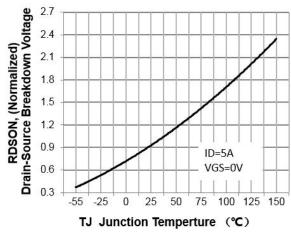
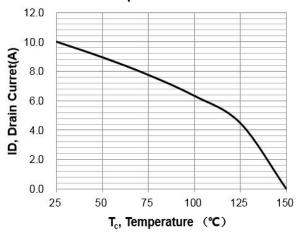
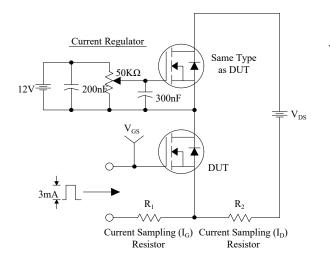
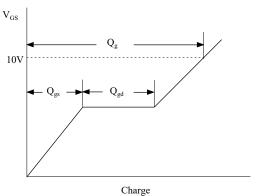
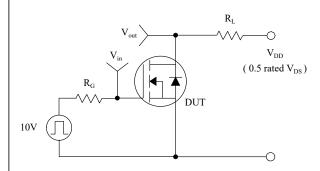
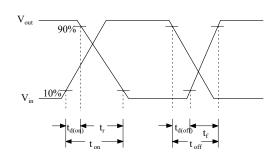
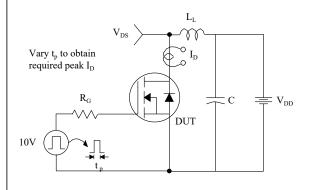


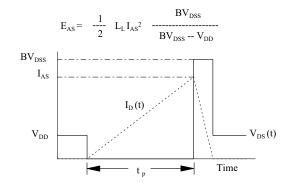
Figure 8. On-Resistance Variation vs Temperature

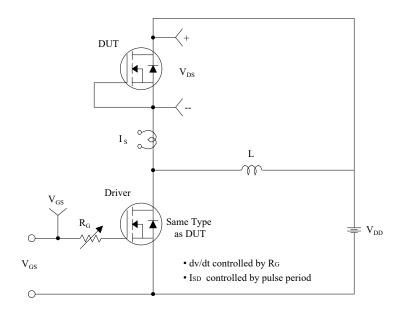




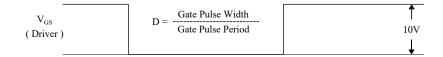

Figure 10. Maximum Drain Current vs Case Temperature

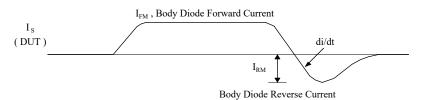

Gate Charge Test Circuit & Waveform

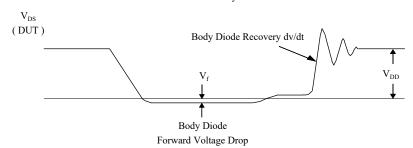


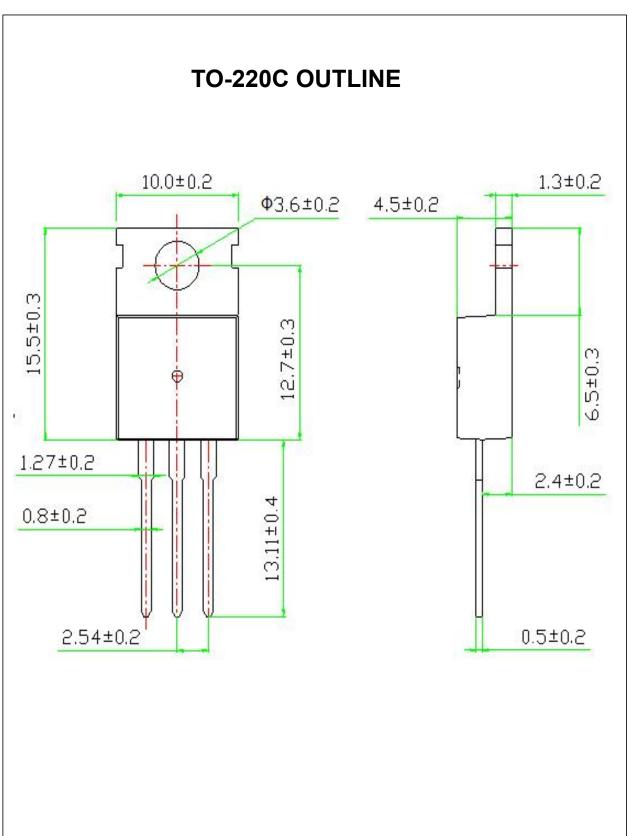

Resistive Switching Test Circuit & Waveforms

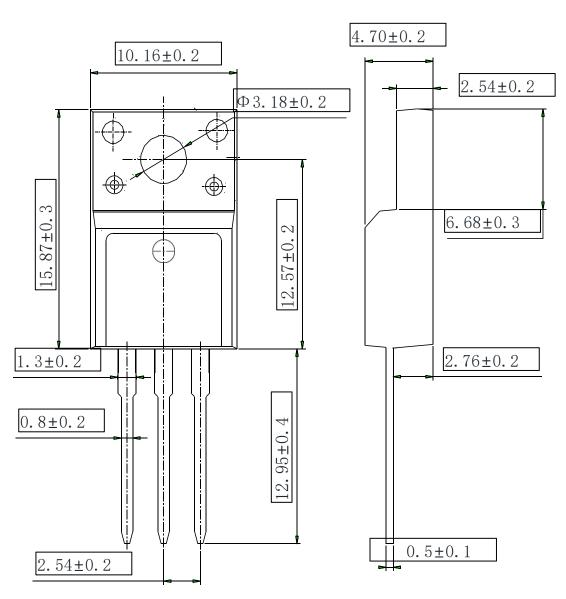



Unclamped Inductive Switching Test Circuit & Waveforms






Peak Diode Recovery dv/dt Test Circuit & Waveforms



TO-220F OUTLINE

NOTE:

1The plastic package is not marked as smooth surfaceRa=0.1;Subglossy surfaceRa=0.8 2.Undeclared tolerance \pm 0.15,Unmarked filletRmax=0.25

Disclaimer

The content specified herein is for the purpose of introducing Msemitek's products (here in after "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Msemitek does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). Msemitek shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although, Msemitek endeavors to improve the quality and reliability of it's products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Msemitek's product.

The content specified herein is subject to change for improvement without notice. When using a Msemitek's product, be sure to obtain the latest specifications.